Discrete Dynamic Fracture with Finite Elements

Jobie M. Gerken, Joel G. Bennett

Los Alamos National Laboratory
Engineering Sciences & Applications
Engineering Analysis

F. W. Smith, PE

Department of Mechanical Engineering Colorado State University

Engineering Analysis

Discrete Dynamic Fracture

- Engineering Analysis Tool
 - Engineering Scale Structures
 - Predict Fracture of Mini Cracks
 - Geometry Changes/Surface Creation
 - Fragmentation
- Maintain "Standard" Modeling Approach
- Avoid
 - Deleting Elements
 - Remeshing
 - Damage Zones Representing Cracks

Engineering Analysis –

————— Los Alamos National Lab ————

Approach

- Model a 2-D Structure w/a Distribution of Cracks
 - Maintain Displacement Continuity

Engineering Analysis

Approach

- Define Failure for Virtual Cracks
- Discrete Fracture Follows Element Interfaces
- Path Otherwise not Predetermined
- Unique Nodal Connectivity
 - Maintain Original MeshDefinition

Engineering Analysis

——— Los Alamos National Lab ——

• Hu - Washizu Energy Principle

$$\Pi_{HW}(\mathbf{u}, \boldsymbol{\sigma}, \boldsymbol{\epsilon}) = \int_{\Omega} \left[\frac{1}{2} \boldsymbol{\epsilon}^{\mathrm{T}} \mathbf{D} \boldsymbol{\epsilon} + \boldsymbol{\sigma}^{\mathrm{T}} (\mathbf{L} \mathbf{u} - \boldsymbol{\epsilon}) \right] d\Omega - \Pi_{\mathrm{EXT}}$$

$$\Pi_{EXT} = \int_{\Omega} \mathbf{u}^{T} \mathbf{b} + \mathbf{\sigma}^{T} \mathbf{\epsilon}^{a} d\Omega$$

• ε^a - externally applied strain field, due to small crack on element surface

Engineering Analysis -

————— Los Alamos National Lab ————

- Linear Approximation for 3 Fields (**u,σ,ε**)
- $\delta \Pi_{HW} = 0$
 - 3 Equations, 3 Unknowns

$$G^{T}A^{-T}HA^{-1}Gd=f+G^{T}A^{-T}HA^{-1}Q$$

$$\mathbf{Q} \equiv \int_{\Omega} \mathbf{S}^{\mathrm{T}} \mathbf{\varepsilon}^{a} d\Omega$$

- Fully Integrated/Numerically Integrated
- $\varepsilon^a \equiv 0$ standard plane stress/strain finite element formulation

Engineering Analysis -

———— Los Alamos National Lab ———

- Applied Strain Field
 - Thru Crack in Infinite
 Elastic Plate
 - Stress WestergaardStress Function
 - Invert to get Strain Field

Engineering Analysis

- Applied Strain Field as a Function of Far Field Stress
 - Far Field Stresses (σ_0 , σ_1) from Adjacent Elements
 - Integrate $\mathbf{Q} \equiv \int \mathbf{S}^{\mathrm{T}} \boldsymbol{\varepsilon}^{a} d\Omega$ numerically and add to standard load vector
 - Done for Each Crack on Surface $Q = \Sigma Q_i$
 - Increases Compliance of Structure

Engineering Analysis ——

—————— Los Alamos National Lab ——

- Can we define failure criteria for the interface to match the macroscopic failure?
 - Only have local information
 - Stress from Adjacent Elements
 - Defined Crack Size

$$K_m = \sigma_0 \sqrt{\pi A}$$

Engineering Analysis

- Linear Elastic Fracture Mechanics
 - Apply macro equations to local problem

$$K_l = \sigma_l \sqrt{\pi a}$$

- $-\sigma_i$ is higher at crack tip, a is smaller than macro crack
- Failure Criterion: $K_l \ge K_{Ic}$
 - Instantaneous Growth
 - Strain Energy from Adjacent Elements
- Problems with Growth Criteria

Engineering Analysis — Los Alamos National Lab —

- Elastic Plastic Fracture Mechanics
 - Assume Crack Growth Follows G-R Curve
 - Known for Material

$$G = \beta (\Delta a)^{\gamma} + \lambda$$

Engineering Analysis

• Find Strain Energy Release Rate

$$K = \sigma_l \sqrt{\pi \cdot a} \qquad G = \frac{K^2}{E}$$

• Invert $G(\Delta a)$ to get change in crack length

$$\Delta a = \left(\frac{G - \lambda}{\beta}\right)^{\frac{1}{\gamma}}$$

• Failure Criterion: *a* > interface width

- Problem: balance between σ_l a and σ_m A incorrect
- Need better method of calculating stress intensity factor
- Look at a small crack in the vicinity of a large crack

Engineering Analysis

• A>>a

$$\frac{K_M}{K_V} \approx \text{Constant}$$

- Get Macro Stress Intensity from Local State
- Use in EPFM
- Works Well for Large Straight Macro Cracks

Engineering Analysis

- Still Working on Failure Criteria
- Fracture Paths Correct
- Load and Speed not Correct

- Cantilever Impact
 - A2 Tool Steel

$$G = \left[16(\Delta a)^{\frac{3}{4}} + 10\right] \left(\frac{in \cdot lb}{in^2}\right)$$

Engineering Analysis

• 3240 Plane Stress Elements -12960 Nodes

Engineering Analysis

Tracing of Dynamic Fracture Sample After Failure - A2 Steel Liu, Stout, Gerken, Smith - 6/11/98

Engineering Analysis ————

Engineering Analysis

• Mechanically Coupled Cook Off Experiment

Engineering Analysis

Engineering Analysis

Los Alamos National Lab -

Third Biennial Tri-Laboratory Conference on Modeling and Simulation

- Plane Strain
- Random Cracks
- Elastic/Plastic Cu
- ViscoSCRAM
- Thermal Expansion

Engineering Analysis

LOS Alamos National Lad

• Heat Up 120 K

Engineering Analysis

Los Alamos National Lab —

Third Biennial Tri-Laboratory Conference on Modeling and Simulation

Apply Pressure - 5MPa/μsec

Engineering Analysis

• 3 to 5 Large Discrete Cracks Predicted

Engineering Analysis

• Cracks Increase Temp. and Damage

Engineering Analysis

Conclusions

- Discrete Fracture Model
 - Predicts Formation of Cracks
 - Predicts Appropriate Numbers of Cracks
 - Maintains "Standard" Modeling Approach
 - Failure Criteria Need Improvement
- Reproducing Experimental Results
 - Crack Paths Look Good

Engineering Analysis -

————— Los Alamos National Lab ———